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(
aT;j) 

'Yij == - V au u' (46) 

where U is the internal energy. The correct micros­
copic definition must be found so as to be consis­
tent with this definition. Equation (3) may be 
written 

T/j = P d;P + PL d In w,,(~) . 
dUil " dUij a In w" T 

By defining 

1 din w} 
'Y ;;== -2~' 

(47) 

(48) 

and substituting into (47), we can get, using the 
Griineisen approximation (i.e. assuming 'Y :; to be 
independent of IJ), 

( ar..) 
au ; u = - P'Yij, (49) 

to which (46) reduces in the present approximation. 
Now, substituting the expansion (39) into the 

definition (48), suppressing the index v, and using 
(5), (13) and (15), one obtains 

, 
W O-

'Yij = - 4w 2( G.iG,j + GUGkj)(g., + h.,,,,,,E,,,,, + ... ). 

(50) 

Evaluating this and its derivative at E = 0, one can 
derive that 

g/j = - 2'Y~, (51) 

( 
iJ'Yii) hij., = - 2 -a + giigk/ + gik8il + gik8i/. S., ° (52) 

From the definitions, in (39), of gii and hiikl and the 
symmetry of E ij, it may be seen that gi;, and hence 
'Yi;, is symmetric in i and j, and that hiikl has the full 
Voigt symmetry, in analogy with the effective elas­
tic moduli , eiikl. 

Again , similar development in terms of TJ yields 

g'ii=- 2'Y~=gi;' (53) 

h'iikl = - 2 (iJa'Yil) + giig., - gi.8il - gi.8i/. (54) S., 0 

If the material has cubic symmetry, the number 
of independent parameters gii and hiikl is reduced . 
Thus 'Yi;, and hence gii, reduces to a scalar multiple 
of the unit tensor [2] : 

'Yii = 'Y8ij. (55) 

Paper I (the actual notation was h") can be related 
to gij and hijkl by comparing (39) with the corres­
ponding scalar expansion in Paper I: 

g = gih h = hiikk. 

Thus , for cubic symmetry, 

1 
gij = 3g8ii, h = 3(h ll + 2h I1 ). 

Then the general expression (52) reduces to 

h _ 2(a'YI I) g1 2g 1111 - - -- +-+­
aS 11 0 9 3 ' 

h ll"=-2(~) +g2 
-- iJS 11 ° 9 ' 

h - 2(a'Y 11 ) g 1212 - - -- +-. 
aS I1 0 3 

Similarly, (43) gives 

° - - 0 1 2h 2/9)U O 2 C Ol r ll -4> ,1+ 4( II -g q- gT q 36, 

o _ - 0 1 ( h 1/ U ° 2 C 0/36 r 11 - 4> 11+ 42 I,- g 9) q -g T q , 

o _ - 0 1 U O r •• - 4> 44 +2h.4 q, 

(56) 

(57) 

(58) 

(59) 

(60) 

(61) 

(62) 

(63) 

where ;P.P is the appropriate combination of deriva­
tives of ;Po 

The analogues of (58-60) are, from (54) , 

h' =-2(~) +g'_ 2g 111 1 iJS II 0 9 3 ' 

h ~101=-2(~) +g' as" 0 9 ' 

h ~212 = - 2(a'Y11) - B. 
iJs I , 0 3' 

(64) 

(65) 

(66) 

The analogues of (61-63), derived from (45), have 
exactly the same form , but with h likl replacing hiikl. 

The above expressions for the temperature de­
pendence of the r ijkl and t il., are for the isothermal 
parameters, i.e. for the parameters entering the 
finite strain expansions of the isothermal elastic 
moduli. The modifications to the derivation neces­
sary to derive the isentropic parameters are simple 
generalizations of those made in Paper I. The re­
sulting isentropic analogue of (43), for instance, is 

Also , hijk/, in analogy with the elastic moduli , reduce 1 
to three independent components, h llll , h lln and r~tl= ;P?jkl+ 4(2hij - gijgkl )Uqo. (67) 

h 1212, or, in the Voigt abbreviated notation , hi J, h 11 
and h •• . The bulk parameters g and h defined in Note, in particular, that 
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(68) 

which is identical to its isothermal analogue. Thus 
there is no difference between c!. and c J.. This is a 
well known result. 

4. THERMODYNAMIC RELATIONS 

In the "isotropic strain" theory of Paper I, the 
Griineisen parameter and its volume derivative 
were related to the bulk modulus and its pressure 
and temperature derivatives through thermo­
dynamic identities. These identies must be general­
ized for the present case. The initial part of the 
treatment given here is similar to that given by 
Mason [16] . The infinitesimal symmetric strain s 
defined by (7) will be used in this section. The 
temperature and entropy will be denoted by 8 and 
0", respectively, to avoid confusion with the stress, 
T, and the strain, s. 

It is convenient to consider first the relation be­
tween isothermal and isentropic elastic moduli . 
From the first and second laws of thermodynamics, 
the change of internal energy per unit volume of a 
system in a reversible process is given by 

d U = T; ds; + 8 dO", (69) 

where the stress and strain are written in the Voigt 
notation, as will be all relations henceforth, unless 
otherwise noted. The Helmholtz free energy, A, is 
defined by 

A = U - 80", (70) 

whence 

dA = T; dSI - O"d6, (71) 

and 

T,=(:~) e' O"=-(~:).. (72) 

With Si and 8 as independent variables , we may 
write 

from which we can make the identification 

(aO") = pC, a8 , 8 ' (76) 

where p is density and C, is the specific heat at 
constant strain. In an isentropic process, i.e. dO" = 
0, the change in temperature is , from (73), 

8Ai 
d8 =--C dsi• 

p , 
(77) 

Now, again in terms of Si and 8, the change in 
stress is 

(78) 

where 

(79) 

is the isothermal elastic modulus. Thus, using (77), 
the isentropic change in stress is 

(80) 

from which the isentropic elastic modulus is 

U 8 8AiAj 
C;j = c ;J + pC,· (81) 

Using the chain rule of differentiation, we see 
that 

(82) 

where ai is the thermal expansion tensor. 
Next, consider the Griineisen parameter and its 

strain derivatives. From the thermodynamic defini­
tion (46) of the generalized Griineisen parameter 
(using the Voigt notation, and recalling that U is 
now energy per unit volume), 

Yi= - (~~),Uir), 
= VAilC, = Vajc ~/C" (83) 

which generalizes the usual Griineisen relation. 

dO" = Ai dSi + (;~), d8, 

Equation (83) can be differentiated with respect 
(73) to Sk, and, using the relations 

where 

A. = (aO") = _ (aT,) 
I a~ 8 a8 : (74) 

using equation (72). In a reversible process, the 

where 

8. = I if k = 1, 2, 3, 

8. = 0 if k = 4, 5, 6, 

(84) 

(85) 

quantity of heat absorbed by the system is and 

dQ = 8 dO" = 8A; ds; + 8(;~), d8, (75) ( aA;) = _ (ad.) , aSk 8 a8 , (86) 

) 


